↳ PROLOG
↳ PrologToPiTRSProof
With regard to the inferred argument filtering the predicates were used in the following modes:
ackermann3: (b,b,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
ackermann_3_in_gga3(0_0, N, s_11(N)) -> ackermann_3_out_gga3(0_0, N, s_11(N))
ackermann_3_in_gga3(s_11(M), 0_0, Val) -> if_ackermann_3_in_1_gga3(M, Val, ackermann_3_in_gga3(M, s_11(0_0), Val))
ackermann_3_in_gga3(s_11(M), s_11(N), Val) -> if_ackermann_3_in_2_gga4(M, N, Val, ackermann_3_in_gga3(s_11(M), N, Val1))
if_ackermann_3_in_2_gga4(M, N, Val, ackermann_3_out_gga3(s_11(M), N, Val1)) -> if_ackermann_3_in_3_gga5(M, N, Val, Val1, ackermann_3_in_gga3(M, Val1, Val))
if_ackermann_3_in_3_gga5(M, N, Val, Val1, ackermann_3_out_gga3(M, Val1, Val)) -> ackermann_3_out_gga3(s_11(M), s_11(N), Val)
if_ackermann_3_in_1_gga3(M, Val, ackermann_3_out_gga3(M, s_11(0_0), Val)) -> ackermann_3_out_gga3(s_11(M), 0_0, Val)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
ackermann_3_in_gga3(0_0, N, s_11(N)) -> ackermann_3_out_gga3(0_0, N, s_11(N))
ackermann_3_in_gga3(s_11(M), 0_0, Val) -> if_ackermann_3_in_1_gga3(M, Val, ackermann_3_in_gga3(M, s_11(0_0), Val))
ackermann_3_in_gga3(s_11(M), s_11(N), Val) -> if_ackermann_3_in_2_gga4(M, N, Val, ackermann_3_in_gga3(s_11(M), N, Val1))
if_ackermann_3_in_2_gga4(M, N, Val, ackermann_3_out_gga3(s_11(M), N, Val1)) -> if_ackermann_3_in_3_gga5(M, N, Val, Val1, ackermann_3_in_gga3(M, Val1, Val))
if_ackermann_3_in_3_gga5(M, N, Val, Val1, ackermann_3_out_gga3(M, Val1, Val)) -> ackermann_3_out_gga3(s_11(M), s_11(N), Val)
if_ackermann_3_in_1_gga3(M, Val, ackermann_3_out_gga3(M, s_11(0_0), Val)) -> ackermann_3_out_gga3(s_11(M), 0_0, Val)
ACKERMANN_3_IN_GGA3(s_11(M), 0_0, Val) -> IF_ACKERMANN_3_IN_1_GGA3(M, Val, ackermann_3_in_gga3(M, s_11(0_0), Val))
ACKERMANN_3_IN_GGA3(s_11(M), 0_0, Val) -> ACKERMANN_3_IN_GGA3(M, s_11(0_0), Val)
ACKERMANN_3_IN_GGA3(s_11(M), s_11(N), Val) -> IF_ACKERMANN_3_IN_2_GGA4(M, N, Val, ackermann_3_in_gga3(s_11(M), N, Val1))
ACKERMANN_3_IN_GGA3(s_11(M), s_11(N), Val) -> ACKERMANN_3_IN_GGA3(s_11(M), N, Val1)
IF_ACKERMANN_3_IN_2_GGA4(M, N, Val, ackermann_3_out_gga3(s_11(M), N, Val1)) -> IF_ACKERMANN_3_IN_3_GGA5(M, N, Val, Val1, ackermann_3_in_gga3(M, Val1, Val))
IF_ACKERMANN_3_IN_2_GGA4(M, N, Val, ackermann_3_out_gga3(s_11(M), N, Val1)) -> ACKERMANN_3_IN_GGA3(M, Val1, Val)
ackermann_3_in_gga3(0_0, N, s_11(N)) -> ackermann_3_out_gga3(0_0, N, s_11(N))
ackermann_3_in_gga3(s_11(M), 0_0, Val) -> if_ackermann_3_in_1_gga3(M, Val, ackermann_3_in_gga3(M, s_11(0_0), Val))
ackermann_3_in_gga3(s_11(M), s_11(N), Val) -> if_ackermann_3_in_2_gga4(M, N, Val, ackermann_3_in_gga3(s_11(M), N, Val1))
if_ackermann_3_in_2_gga4(M, N, Val, ackermann_3_out_gga3(s_11(M), N, Val1)) -> if_ackermann_3_in_3_gga5(M, N, Val, Val1, ackermann_3_in_gga3(M, Val1, Val))
if_ackermann_3_in_3_gga5(M, N, Val, Val1, ackermann_3_out_gga3(M, Val1, Val)) -> ackermann_3_out_gga3(s_11(M), s_11(N), Val)
if_ackermann_3_in_1_gga3(M, Val, ackermann_3_out_gga3(M, s_11(0_0), Val)) -> ackermann_3_out_gga3(s_11(M), 0_0, Val)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
ACKERMANN_3_IN_GGA3(s_11(M), 0_0, Val) -> IF_ACKERMANN_3_IN_1_GGA3(M, Val, ackermann_3_in_gga3(M, s_11(0_0), Val))
ACKERMANN_3_IN_GGA3(s_11(M), 0_0, Val) -> ACKERMANN_3_IN_GGA3(M, s_11(0_0), Val)
ACKERMANN_3_IN_GGA3(s_11(M), s_11(N), Val) -> IF_ACKERMANN_3_IN_2_GGA4(M, N, Val, ackermann_3_in_gga3(s_11(M), N, Val1))
ACKERMANN_3_IN_GGA3(s_11(M), s_11(N), Val) -> ACKERMANN_3_IN_GGA3(s_11(M), N, Val1)
IF_ACKERMANN_3_IN_2_GGA4(M, N, Val, ackermann_3_out_gga3(s_11(M), N, Val1)) -> IF_ACKERMANN_3_IN_3_GGA5(M, N, Val, Val1, ackermann_3_in_gga3(M, Val1, Val))
IF_ACKERMANN_3_IN_2_GGA4(M, N, Val, ackermann_3_out_gga3(s_11(M), N, Val1)) -> ACKERMANN_3_IN_GGA3(M, Val1, Val)
ackermann_3_in_gga3(0_0, N, s_11(N)) -> ackermann_3_out_gga3(0_0, N, s_11(N))
ackermann_3_in_gga3(s_11(M), 0_0, Val) -> if_ackermann_3_in_1_gga3(M, Val, ackermann_3_in_gga3(M, s_11(0_0), Val))
ackermann_3_in_gga3(s_11(M), s_11(N), Val) -> if_ackermann_3_in_2_gga4(M, N, Val, ackermann_3_in_gga3(s_11(M), N, Val1))
if_ackermann_3_in_2_gga4(M, N, Val, ackermann_3_out_gga3(s_11(M), N, Val1)) -> if_ackermann_3_in_3_gga5(M, N, Val, Val1, ackermann_3_in_gga3(M, Val1, Val))
if_ackermann_3_in_3_gga5(M, N, Val, Val1, ackermann_3_out_gga3(M, Val1, Val)) -> ackermann_3_out_gga3(s_11(M), s_11(N), Val)
if_ackermann_3_in_1_gga3(M, Val, ackermann_3_out_gga3(M, s_11(0_0), Val)) -> ackermann_3_out_gga3(s_11(M), 0_0, Val)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ PiDPToQDPProof
ACKERMANN_3_IN_GGA3(s_11(M), 0_0, Val) -> ACKERMANN_3_IN_GGA3(M, s_11(0_0), Val)
ACKERMANN_3_IN_GGA3(s_11(M), s_11(N), Val) -> ACKERMANN_3_IN_GGA3(s_11(M), N, Val1)
IF_ACKERMANN_3_IN_2_GGA4(M, N, Val, ackermann_3_out_gga3(s_11(M), N, Val1)) -> ACKERMANN_3_IN_GGA3(M, Val1, Val)
ACKERMANN_3_IN_GGA3(s_11(M), s_11(N), Val) -> IF_ACKERMANN_3_IN_2_GGA4(M, N, Val, ackermann_3_in_gga3(s_11(M), N, Val1))
ackermann_3_in_gga3(0_0, N, s_11(N)) -> ackermann_3_out_gga3(0_0, N, s_11(N))
ackermann_3_in_gga3(s_11(M), 0_0, Val) -> if_ackermann_3_in_1_gga3(M, Val, ackermann_3_in_gga3(M, s_11(0_0), Val))
ackermann_3_in_gga3(s_11(M), s_11(N), Val) -> if_ackermann_3_in_2_gga4(M, N, Val, ackermann_3_in_gga3(s_11(M), N, Val1))
if_ackermann_3_in_2_gga4(M, N, Val, ackermann_3_out_gga3(s_11(M), N, Val1)) -> if_ackermann_3_in_3_gga5(M, N, Val, Val1, ackermann_3_in_gga3(M, Val1, Val))
if_ackermann_3_in_3_gga5(M, N, Val, Val1, ackermann_3_out_gga3(M, Val1, Val)) -> ackermann_3_out_gga3(s_11(M), s_11(N), Val)
if_ackermann_3_in_1_gga3(M, Val, ackermann_3_out_gga3(M, s_11(0_0), Val)) -> ackermann_3_out_gga3(s_11(M), 0_0, Val)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
ACKERMANN_3_IN_GGA2(s_11(M), 0_0) -> ACKERMANN_3_IN_GGA2(M, s_11(0_0))
ACKERMANN_3_IN_GGA2(s_11(M), s_11(N)) -> ACKERMANN_3_IN_GGA2(s_11(M), N)
IF_ACKERMANN_3_IN_2_GGA2(M, ackermann_3_out_gga1(Val1)) -> ACKERMANN_3_IN_GGA2(M, Val1)
ACKERMANN_3_IN_GGA2(s_11(M), s_11(N)) -> IF_ACKERMANN_3_IN_2_GGA2(M, ackermann_3_in_gga2(s_11(M), N))
ackermann_3_in_gga2(0_0, N) -> ackermann_3_out_gga1(s_11(N))
ackermann_3_in_gga2(s_11(M), 0_0) -> if_ackermann_3_in_1_gga1(ackermann_3_in_gga2(M, s_11(0_0)))
ackermann_3_in_gga2(s_11(M), s_11(N)) -> if_ackermann_3_in_2_gga2(M, ackermann_3_in_gga2(s_11(M), N))
if_ackermann_3_in_2_gga2(M, ackermann_3_out_gga1(Val1)) -> if_ackermann_3_in_3_gga1(ackermann_3_in_gga2(M, Val1))
if_ackermann_3_in_3_gga1(ackermann_3_out_gga1(Val)) -> ackermann_3_out_gga1(Val)
if_ackermann_3_in_1_gga1(ackermann_3_out_gga1(Val)) -> ackermann_3_out_gga1(Val)
ackermann_3_in_gga2(x0, x1)
if_ackermann_3_in_2_gga2(x0, x1)
if_ackermann_3_in_3_gga1(x0)
if_ackermann_3_in_1_gga1(x0)
From the DPs we obtained the following set of size-change graphs: